A Convex Optimization Approach to the Rational Covariance Extension Problem
نویسندگان
چکیده
In this paper we present a convex optimization problem for solving the rational covariance extension problem. Given a partial covariance sequence and the desired zeros of the modeling filter, the poles are uniquely determined from the unique minimum of the corresponding optimization problem. In this way we obtain an algorithm for solving the covariance extension problem, as well as a constructive proof of Georgiou’s seminal existence result and his conjecture, a stronger version of which we have resolved in [7].
منابع مشابه
A Homotopy Approach to Rational Covariance Extension with Degree Constraint
The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the illconditioning is pr...
متن کاملFrom Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach
The trigonometric moment problem is a classical moment problem with numerous applications in mathematics, physics, and engineering. The rational covariance extension problem is a constrained version of this problem, with the constraints arising from the physical realizability of the corresponding solutions. Although the maximum entropy method gives one well-known solution, in several applicatio...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملA Convex Optimization Approach to Generalized Moment Problems
In this paper we present a universal solution to the generalized moment problem, with a nonclassical complexity constraint. We show that this solution can be obtained by minimizing a strictly convex nonlinear functional. This optimization problem is derived in two different ways. We first derive this intrinsically, in a geometric way, by path integration of a one-form which defines the generali...
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998